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Abstract

Neuroimaging data acquired using multiple scanners or protocols are increasingly

available. However, such data exhibit technical artifacts across batches which intro-

duce confounding and decrease reproducibility. This is especially true when multi-

batch data are analyzed using complex downstream models which are more likely to

pick up on and implicitly incorporate batch-related information. Previously proposed

image harmonization methods have sought to remove these batch effects; however,

batch effects remain detectable in the data after applying these methods. We present

DeepComBat, a deep learning harmonization method based on a conditional varia-

tional autoencoder and the ComBat method. DeepComBat combines the strengths of

statistical and deep learning methods in order to account for the multivariate relation-

ships between features while simultaneously relaxing strong assumptions made by

previous deep learning harmonization methods. As a result, DeepComBat can per-

form multivariate harmonization while preserving data structure and avoiding the

introduction of synthetic artifacts. We apply this method to cortical thickness mea-

surements from a cognitive-aging cohort and show DeepComBat qualitatively and

quantitatively outperforms existing methods in removing batch effects while preserv-

ing biological heterogeneity. Additionally, DeepComBat provides a new perspective

for statistically motivated deep learning harmonization methods.
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Practitioner Points

• Batch effects are present in datasets collected across multiple scanners or sites, and presence

of these batch effects may decrease reproducibility and generalizability.

• DeepComBat offers improved removal of nonlinear batch effects in multivariate settings.

• DeepComBat relies on fewer strong assumptions compared to current methods and offers a

new perspective on deep learning-based harmonization methods.

1 | INTRODUCTION

There is increasing need for larger sample sizes in human magnetic

resonance imaging (MRI) studies to detect small effect sizes, train

accurate prediction models, improve generalizability, and more. This

has led to more interest in multi-batch studies, where subjects are

imaged across multiple settings—different research sites, scanner

manufacturers, acquisition settings, magnet strengths, and more—and

then aggregated together (Bethlehem et al., 2022; Casey et al., 2018;

Di Martino et al., 2014; Marek et al., 2022; Mueller et al., 2005;

Trivedi et al., 2016; Van Essen et al., 2013). Multi-batch studies over-

come limitations of single site studies, which are often unable to

recruit sufficiently large or representative samples to achieve study

goals; however, multi-batch study designs introduce non-biological,

technical variability between subjects imaged from different batches

due to differences in acquisition, scanner manufacturer, magnet

strength, post-processing, and more (Badhwar et al., 2020; Han

et al., 2006; Jovicich et al., 2006; Takao et al., 2011; Takao

et al., 2014). Such technical variability is often referred to as “scanner
effects” or “batch effects” and, if not appropriately addressed, may

result in invalid, non-reproducible, or non-generalizable study results.

Post-acquisition removal of these batch effects, known as image har-

monization, is a promising approach for mitigating these issues (Hu

et al., 2023).

Harmonization of image-derived features, such as cortical thick-

nesses, functional connectivity values, radiomics features, and more

has been extensively studied. Fortin et al. (2017) showed that the

ComBat model, adapted from the genomics setting, could effectively

remove batch effects by modeling them univariately as additive differ-

ences in means and as multiplicative differences in variances of resid-

uals (Johnson et al., 2007). This model has also been extended to

unique data settings, such as those where covariate effects are non-

linear, longitudinal data is present, decentralized learning is required,

multiple batch variables should be corrected for, or traveling subjects

are available (Bayer et al., 2022; Bostami et al., 2022; Chen, Luo,

et al., 2022; Horng et al., 2022; Maikusa et al., 2021; Pomponio

et al., 2020). In applied studies, ComBat-family methods have been

widely used and shown to improve inference and generalizability of

results (Acquitter et al., 2022; Bartlett et al., 2018; Bourbonne

et al., 2021; Crombé et al., 2020; Fortin et al., 2018; Marek

et al., 2019; Yu et al., 2018). This may be especially true in mass

univariate inference settings, where biological effects are modeled at

the individual feature level, since this setting matches the data

assumptions made by the ComBat model.

However, in studies where feature-level data are used in a highly

multivariate manner, univariate harmonization approaches may be

insufficient. For example, as imaging researchers have become more

interested in complex prediction efforts, multivariate feature datasets

are used as inputs to predict an outcome of interest. In these settings,

state-of-the-art machine learning (ML) algorithms are often used as

powerful approaches that are able to jointly leverage the multivariate

distribution of features, accounting for complex nonlinear and interac-

tion effects (Hu et al., 2023; Koutsouleris et al., 2014; Smith

et al., 2017; Wager et al., 2013). Batch effects that exist in the interac-

tions between features may also be picked up by these ML algorithms,

which can lead to decreased generalizability of these models and

overfitting of model parameters on batch effects, especially when

batch status is a relevant confounder for the outcome. Thus, recent

efforts in feature-level harmonization have attempted to detect and

mitigate such multivariate batch effects.

From the statistical perspective, recently proposed methods for

multivariate harmonization have included CovBat (Chen et al., 2022),

Bayesian factor regression (BFR, Avalos-Pacheco et al., 2022), and

UNIFAC (Zhang et al., 2022). Like ComBat, these models assume

batch effects can be effectively modeled through the combination of

low-rank additive and multiplicative effects. However, instead of

modeling batch effects solely in a univariate manner, CovBat addition-

ally assumes batch effects to be present in the covariance structure of

model residuals, while BFR and UNIFAC assume additive batch effects

to be present in the direction of multivariate latent factors. Addition-

ally, while ComBat, CovBat, and UNIFAC all seek to ultimately pro-

duce a dataset of harmonized features, BFR instead learns a low-

dimensional representation of the original features where batch

effects have been removed; BFR does not map this low-dimensional

representation back to the feature space.

From the deep learning perspective, feature-level multivariate

harmonization methods have leveraged the conditional variational

autoencoder (CVAE) architecture, an adaptation of the standard varia-

tional autoencoder that attempts to disentangle the latent space dis-

tribution from covariates of interest (Kingma & Welling, 2014; Sohn

et al., 2015). These models include diffusion CVAE (dcVAE, Moyer

et al., 2020) and goal-specific CVAE (gcVAE, An et al., 2022). In
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dcVAE, an encoder embeds vector representations of diffusion MRI

data as latent space distributions, and the encoder is penalized when

batch-specific information is present in the latent space representa-

tion. Then, the decoder is given these latent space distributions along

with explicit batch information and trained to reconstruct the original

input. Through this process, dcVAE assumes that the encoder can

learn to remove batch effects and the decoder can accurately recon-

struct the original data while removing batch effects. However, An

et al. (2022) noted that dcVAE removes biological information of

interest. They proposed gcVAE could recover this biological informa-

tion by fine-tuning the dcVAE decoder such that the decoder could

not only accurately reconstruct the input but could also retain biologi-

cal information of interest in the reconstruction. gcVAE encourages

this behavior by adding a pre-trained neural network classifier to the

end of dcVAE that uses decoder output to predict biological covari-

ates of interest. Classifier success is rewarded in the loss function.

Additionally, a deep learning network called flow-based structural

causal model has been explored for feature-level harmonization

(Wang et al., 2021). This method seeks to learn the causal effect of

batch, conditional on biological covariates, and sample from the poste-

rior distribution under the counterfactual batch with the goal to

improve predictive performance of a model trained in a reference

dataset.

Notably, deep learning harmonization methods designed for

feature-level data make a number of strong implicit assumptions. First,

deep learning harmonization methods directly use model outputs from

the harmonization step as the resulting harmonized data—unmodeled

residual terms are unaccounted for, as well as any batch or biological

effects in these residuals. Implicitly, this makes the strong assumption

that the deep learning method achieves perfect or nearly perfect

model fit—that is, the reconstruction loss is zero or nearly zero. This is

in contrast to statistical harmonization methods, which tend to esti-

mate batch effects within unmodeled residual as a difference in scale;

the residuals are rescaled and added back to the model-based biologi-

cal effects to produce the resulting harmonized data. Secondly, deep

learning harmonization methods assume that batch and biological

effects can be completely disentangled through loss function optimi-

zation and choice of network architecture. While this may be easily

achievable in isolation, complete disentanglement may be challenging

to achieve in conjunction with the implicit nearly perfect model fit

assumption. Third, these deep learning methods use loss functions

that are limited to harmonization between only two batches—settings

where multiple batches exist are infeasible. Finally, deep learning har-

monization methods often do not explicitly consider that biological

covariates may be imbalanced across batches—in such cases, some

differences across batches may actually be due to true biological dif-

ferences and therefore should not be removed.

We propose a novel deep learning harmonization method, called

DeepComBat, that effectively removes multivariate batch effects

between two or more batches in a statistically informed manner.

Compared to statistical methods such as ComBat and CovBat, Deep-

ComBat removes complex, nonlinear, and multivariate batch effects

from the raw data in a way that mitigates detection of batch

effects using highly multivariate methods. Compared to other deep

learning methods, DeepComBat avoids making the assumptions

described above—unmodeled residual terms are reintroduced, a

completely disentangled latent space is not required, multiple batches

can be harmonized, and model-based batch effects are removed con-

ditional on biological covariates that may be confounders. To the best

of our knowledge, DeepComBat is the first deep learning harmoniza-

tion method that avoids such assumptions. Additionally, DeepComBat

hyperparameters can be easily tuned manually, and DeepComBat can

be thought to have a form of “double-robustness” such that even

with poor model fit, reasonable harmonization can still be achieved.

We apply DeepComBat to cortical thickness measurements

acquired through the Alzheimer's Disease Neuroimaging Initiative

(ADNI) and compare our results to those of other feature-level harmo-

nization methods where open-source code was available, namely:

ComBat, CovBat, dcVAE (modified for non-diffusion setting), and

gcVAE. Compared to other methods, DeepComBat-harmonized data

retain biological information of interest while containing less batch

information. Our results demonstrate the advantage of incorporating

statistical ideas into deep learning methods to perform multivariate

harmonization.

2 | METHODS

2.1 | ADNI dataset and preprocessing

We included 663 unique subjects (381 males) from the ADNI (http://

adni.loni.usc.edu/). For each subject, the most recent T1-weighted

(T1w) imaging acquired during the ADNI-1 phase was used; all

included images were acquired between July 2006 and August 2010.

Informed consent was obtained for all subjects in the ADNI study.

Institutional review boards approved the study at all of the contribut-

ing institutions.

We define three batches based on which manufacturer each

subject's scanner was from. This included Siemens Healthineers

(n = 280), General Electric (GE) Healthcare scanners (n = 287), and

Philips Medical Systems (n = 96). For the purpose of Supplemental

Materials where we compare DeepComBat to dcVAE and gcVAE,

which can only harmonize between two batches, we define Siemens

and non-Siemens as the two batches. Additionally, we define age,

sex, and Alzheimer disease (AD) status (cognitively normal, late mild

cognitive impairment [MCI], AD) as biological covariates of interest

that may confound the relationship between batch status and T1w

imaging—these covariates are known to affect brain structure and

also may be associated with scanner manufacturer through differing

population demographics across sites. Subject demographics at time

of most recent acquisition are presented in Table 1, stratified by

these two batches. Notably, there are marked differences in the dis-

tribution of sex across the three batches, suggesting that confound-

ing of batch status by subject demographics is plausible, and

estimation of batch effects should be conditioned on subject

demographics.
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Processing of these data was carried out using the Advanced Nor-

malization Tools longitudinal single-subject template pipeline

(Tustison et al., 2019). Briefly, we first downloaded raw T1w images

from the ADNI-1 database, which were acquired using MPRAGE for

Siemens and Philips scanners and using a works-in-progress version

of MPRAGE for GE scanners (Jack Jr. et al., 2010). For each subject,

we estimated a single-subject template using all image timepoints and

applied rigid spatial normalization to this template for each timepoint

image. Then, each normalized timepoint image is processed using the

single-image cortical thickness pipeline consisting of (1) brain extrac-

tion (Avants et al., 2010), (2) denoising (Manjón et al., 2010), (3) N4

bias correction (Tustison et al., 2010), (4) Atropos n-tissue segmenta-

tion (Avants et al., 2011), and (5) registration-based cortical thickness

estimation (Das et al., 2009). Finally, for our analyses, we used cortical

thickness values for the 62 Desikan-Killiany-Tourville atlas regions

such that the feature matrix we sought to harmonize was of dimen-

sion 663�62 (Klein & Tourville, 2012). Scan metadata were deter-

mined based on information contained within the Digital Imaging and

Communications in Medicine headers for each scan.

2.2 | ComBat model

We first review the ComBat (Combatting Batch Effects) model, which

models additive and multiplicative batch effects in an empirical Bayes

framework (Fortin et al., 2017; Johnson et al., 2007). This model is

used as a building block for DeepComBat. For each subject, let

yij ¼ yij1,…,yijk ,…,yijp
� �>

represent the p�1 vector of feature-level

information for that subject, where each yijk is a scalar. In this nota-

tion, i¼1,2,…,B indexes batch; j¼1,2,…,ni indexes subjects within

batch i, where ni is the number of subjects acquired in batch i; and

k¼1,2,…,p indexes features, where p is the total number of features.

First, ComBat is fit on each feature individually using the following

model:

yijk ¼ αkþxTijβkþ γikþδikeijk

where αk is the vector of shared intercepts across batches; xij is the

vector of subject-specific biological covariates; βk is the vector of

regression coefficients for the covariates; γik is the vector of mean

batch effects for batch i conditional on the covariates; and δik is the

vector of multiplicative batch effects on the residuals. ComBat

assumes the errors, eijk , are distributed N 0,σ2k
� �

.

For each individual feature, least-squares estimates bαk and bβk are

obtained. Then, to estimate batch effects using empirical Bayes, Com-

Bat assumes the additive batch effects, γik , are drawn from a normal

distribution prior and the multiplicative batch effects, δik , are drawn

from an inverse gamma distribution prior. Hyperparameters for these

priors are estimated via method of moments using data across all fea-

tures. Next, for each feature-level, empirical Bayes estimates, γ�iv and

δ�iv , are obtained as the means of their corresponding posterior distri-

butions. This results in shrinkage estimators for both the additive and

multiplicative batch effects such that these effects can be well-

estimated even when within-batch sample size is small. Finally, esti-

mated batch effects are removed using the following equation:

yComBat
ijk ¼bαkþxTijbβkþ 1

δ�ik
yijk�byijk� �

where byijk ¼bαkþxTijbβkþ γ�ik is the subject-specific mean as estimated

by the ComBat model.

2.3 | DeepComBat method

We propose two versions of DeepComBat—one for internal harmoni-

zation and one external harmonization. We define internal harmoniza-

tion as harmonization in settings where the entire dataset is available

and the goal is to remove confounding batch effects for univariate or

multivariate inference. Meanwhile, external harmonization is useful in

settings where a subset of the dataset is available for training harmo-

nization methods and prediction models, and future out-of-sample

data needs to be brought into the dataset. Internal and external Deep-

ComBat are nearly identical, with the exception of how CVAE param-

eters are optimized, described below.

For internal harmonization, all 663 subjects were included for

ComBat, CovBat, and DeepComBat training and harmonization.

For external harmonization, the DeepComBat-harmonized dataset was

TABLE 1 Patient demographics at
time of acquisition, stratified by batch.

GE, N = 287 Philips, N = 96 Siemens, N = 280

Age 77.3 (7.1) 76.2 (6.2) 77.8 (6.6)

Sex

Male 171 (60%) 63 (66%) 147 (52%)

Female 116 (40%) 33 (34%) 133 (48%)

Diagnosis

Cognitively normal 82 (29%) 33 (34%) 82 (29%)

Late mild cognitive impairment 144 (50%) 41 (43%) 139 (50%)

Alzheimer disease 61 (21%) 22 (23%) 59 (21%)

Mini-Mental State Examination Score 25.3 (4.7) 25.0 (5.5) 24.8 (5.5)

Mean (SD); n (%)
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produced using 10-fold cross-validation; in each fold, 90% of the data

was used to train DeepComBat parameters, and these parameters were

then applied to the remaining 10% of out-of-sample subjects. The final

out-of-sample harmonized dataset was produced by joining all out-

of-sample harmonized subjects across the 10 folds. The same proce-

dure is used for external harmonization using ComBat and CovBat.

2.3.1 | Normalization

Normalization and standardization steps are used to encourage faster

convergence of the DeepComBat CVAE. As in the above notation, let

yij ¼ yij1,…,yijk ,…,yijp
� �>

represent subject ij's cortical thickness vector,

where k indexes features, and xij represent the vector of subject-

specific biological covariates. Additionally, let bij represent that sub-

ject's batch covariate.

In the normalization step, all biological covariates are linearly

shifted and scaled across all ij subjects such that they range between

0 and 1. Batch covariates are indicators and are thus already in this

range. Additionally, each feature is standardized across all ij subjects

such that the overall mean for that feature is 0 and the variance is

1. CVAE training and harmonization steps use this normalized data;

however, the linear transformations of features are stored such that

they can be inverted, and the harmonized output will remain in the

original feature space.

2.3.2 | Architecture

In the CVAE training step, normalized ADNI cortical thickness data

are passed through a standard, fully connected CVAE-style model

with the architecture shown in Figure 1. For architectural hyperpara-

meters, the latent space was empirically chosen to be approximately

one-fourth the size of the input vector, rounded to the nearest power

of 2—in practice, latent spaces approximately one-eight or one-half

the size of the input vector also performed similarly. Four hidden

layers were used on either side of the latent space to allow for suffi-

cient complexity of the encoder to learn meaningful latent space rep-

resentations with minimal batch effects and of the decoder to

incorporate batch effects in reconstruction. Hidden layer sizes were

defined such that each size was approximately halfway between the

size of the layers before and after. Hyperbolic tangent (TanH) activa-

tion functions were used between layers to allow for nonlinearity—

the TanH activation function was empirically found to perform better

than rectified linear units in this application.

One iteration through the CVAE for one subject is as follows.

First, let the encoder input be defined as the column-wise concatena-

tion of the column vectors yij, xij, and bij. This encoder input is passed

through successive hidden layers until it is eventually encoded into

two 16�1 vectors—μij ¼ pθ1 yij,xij,bij
� �

and σij ¼ pθ2 yij,xij,bij
� �

, where

pθ1 �, � , �ð Þ and pθ2 �, � , �ð Þ represent the encoder functions with neural

network parameters θ1 and θ2, respectively. These vectors together

define a multivariate normal random variable, Zij �N μij,diag σij
� �� �

.

This random variable is the output of the encoder and can be thought

of as subject ij's latent space representation. Next, to begin the decod-

ing step, a sample is drawn from this random variable using the repar-

ameterization trick in order to obtain zij (Kingma & Welling, 2014). As

with the encoder input, this sample is column-wise concatenated with

xij and bij to produce the decoder input. Then, it is passed through the

decoder hidden and output layers to obtain a reconstructed feature

vector, byij zij� �¼ qϕ zij,xij,bij
� �

, where qϕ �, � , �ð Þ is the decoder function

with neural network parameters ϕ. Note that this reconstructed fea-

ture vector is a function of the sample from the random variable Zij

and thus changes each time subject ij is passed through the CVAE.

Notably, while it may be unnecessary to provide the encoder with bio-

logical and batch covariates, we thought providing such covariates could

be useful to the encoder for learning a covariate-invariant latent space.

Thus, the latent space distribution, Zij, is a function of the fea-

tures, yij, as well as the covariates xij and bij. Similarly, the recon-

structed feature vector, byij zij� �
is a function of the latent distribution

through zij, as well as the covariates xij and bij. Additionally, by giving

the decoder random samples from the latent space distribution, the

decoder learns that probabilistically nearby points in the latent space

should be mapped to similar outputs in the feature space. That is, the

decoder learns to reconstruct the features such that byij zij� �
≈byij μij

� �
.

The risk of overfitting by the decoder is also minimized, as this ran-

dom sampling functions as a form of data augmentation with respect

to the decoder.

2.3.3 | Loss function

The loss function was defined to be the standard CVAE loss

function which consists of an autoencoder reconstruction loss compo-

nent and a Kullback–Leibler (KL) divergence loss component

(Kingma & Welling, 2014; Sohn et al., 2015). In the DeepComBat

CVAE, this loss function is implemented for each subject as follows:

Lij ¼LReconstruction
ij þλLPrior

ij ¼
Xp
k¼1

yijk�byijk� �2þλDKL f Zij

� � k g Zð Þ� �

where LReconstruction
ij ¼ Pp

k¼1
yijk�byijk� �2

is the reconstruction component,

LPrior
ij ¼DKL f Zij

� � k g Zð Þ� �
is the KL divergence component, and λ is a

hyperparameter to weight the relative importance of the two compo-

nents. The KL divergence component measures the difference

between f Zij

� �
, which is the probability density function of the multi-

variate normal latent space distribution for subject ij, N μij,diag σij
� �� �

,

and g Zð Þ, which is defined in DeepComBat to be the probability den-

sity function of the standard multivariate normal distribution, N 0, Ið Þ.
The overall loss function is defined as the sum over all sub-

jects: LOverall ¼PB
i¼1

Pni
j¼1

Lij.

The KL divergence term can be thought to enforce a standard

normal Bayesian prior on the latent space, where λ represents the

strength of the prior. Thus, the KL divergence term allows for
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regularization of the latent space as well as encourages removal of

information that is unnecessary for reconstruction from the latent

space. In the DeepComBat CVAE, since biological and batch covari-

ates are explicitly given to the decoder, optimal latent space represen-

tations should contain no information about these covariates and

instead encode richer, subject-specific information. Practically, this

complete independence may be unrealistic to achieve, and this is

accounted for during the harmonization step.

Importantly, while biological and batch covariates are used as

inputs for both the encoder and the decoder, the CVAE is not

F IGURE 1 Top: DeepComBat conditional variational autoencoder (CVAE) architecture and loss functions used during training. Bottom:
DeepComBat CVAE algorithm used during the harmonization step. At this step, encoder and decoder parameters have been learned during the

training step and are frozen. Notation corresponds to that in the main text.
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rewarded for including information about these covariates in the loss

function. This design choice prevents the CVAE from introducing bias,

but still allows the model to learn multivariate batch effects condi-

tional on potential biological confounders.

2.3.4 | Optimization and hyperparameter tuning

This CVAE loss function is known to have the potential to suffer from KL

vanishing, also referred to as posterior collapse, where a local minimum of

the loss function is reached and the model cannot improve (Bowman

et al., 2016). In KL vanishing, the encoder learns to collapse all latent

space representations to the standard normal prior such that the KL com-

ponent of the loss function is nearly zero, and the decoder is given total

noise and is therefore unable to learn anything in order to make progress

toward further minimizing the loss. To minimize risk of posterior collapse

in the DeepComBat CVAE, we utilize a cyclic annealing optimization

schedule (Fu et al., 2019). In this schedule, λ is gradually increased from

0 to the goal final KL divergence weight multiple times over the

course of model training. This provides opportunities for the optimizer

to escape local minimum when λ is small and allows for progressive

learning of more meaningful latent representations across cycles.

In DeepComBat, we perform manual hyperparameter tuning to

determine our desired final λFinal ¼0:1. The goal in tuning λFinal is

to impose a prior that is strong enough to regularize the latent space

and Euclidean distance between latent space representations are

meaningful, but weak enough to allow for rich, subject-specific infor-

mation to be encoded in the latent space in order to produce high-

quality reconstructions.

Using this λFinal, we first pre-train the CVAE for 5 epochs with

λ¼0, then perform cyclic annealing over 30 epochs where one cycle

is 5 epochs and λ increases linearly from 0 to λFinal within each cycle,

and finally train the CVAE for 5 epochs with the desired λ¼ λFinal. This

cyclic annealing procedure is computationally helpful to improve con-

vergence and is performed in a fully automated manner—users are

only required to specify the desired λFinal. Compared to a more

straightforward constant-schedule training schedule where the CVAE

is trained using a constant λ¼ λFinal for all 40 total epochs, the cyclic

annealing schedule leads to significantly lower final overall and recon-

struction losses as well as significantly higher final prior losses when

λFinal is large (Supplemental Figure 1, p< .05). Thus, cyclic schedule

training may allow for better estimation of subject-specific multivari-

ate means using subject-specific latent space factors that are indepen-

dent of batch and biological covariates. Additionally, when λFinal is

large, the variances of final reconstruction and prior losses appear

qualitatively larger under the constant schedule compared to the

cyclic schedule. This suggests cyclic schedule training may be more

consistent compared to constant schedule training when trade-offs

between reconstruction loss and prior loss are high. We present

results using cyclic annealing in the main text and provide additional

results using both cyclic annealing and constant scheduling for various

λFinal in the Supplemental Materials.

For internal DeepComBat, optimization was performed using the

Adam optimizer with learning rate of 0.01, chosen to increase the ini-

tial rate of model convergence (Kingma & Ba, 2017). For external

DeepComBat, optimization was performed using the AdamW opti-

mizer, a version of Adam which shrinks parameter estimates toward

0 and therefore introduces regularization and reduces overfitting

(Loshchilov & Hutter, 2019). For AdamW, we used a learning rate of

0.01 and default weight decay. Within epochs, data were passed to

the CVAE in mini-batches of 64 subjects.

Note that, in contrast to similar CVAE-based harmonization

methods like dcVAE, gcVAE, and a number of image-based methods

which require a KL divergence component hyperparameter such

that latent space distributions are independent of batch, the Deep-

ComBat λFinal is instead only used to regularize the latent space and

reduce the amount of batch information in the latent space, if possi-

ble. However, substantial remaining batch information in the Deep-

ComBat latent space is allowed, which enables easier hyperparameter

tuning.

Additionally, in settings with larger numbers of features, such as

with functional connectivity measures, the DeepComBat package

allows for user specification of number of hidden layers as well as hid-

den layer and latent space sizes. Decreasing these hyperparameters

will decrease the computational time necessary to train DeepComBat;

however, other than to improve computational efficiency, these

hyperparameters do not need to be tuned. Empirically, in the ADNI

dataset, DeepComBat performance was robust to such changes in

hyperparameters.

2.3.5 | Harmonization

Once the CVAE model has been trained, harmonization can be per-

formed on the latent space, the CVAE decoder, and the reconstruc-

tion residuals, as shown in Figure 1. In the latent space, each subject's

noisy latent space distribution, Zij, is converted to the noiseless latent

space mean vector, μij. Then, across all ij subjects, the ComBat model

described above is fitted using both batch and biological covariates to

harmonize the latent space. Let each ComBat-harmonized latent

space representation be denoted as: μComBat
ij .

Next, the decoder output is harmonized. In this step, the decoder

input is changed such that it receives harmonized latent space mean

vectors as well as the desired batch for the harmonized data. The

decoder additionally continues to receive unchanged biological

covariates.

Then, the reconstruction residuals are calculated and harmonized.

To estimate these residuals, noiseless reconstructions are first esti-

mated by giving the decoder latent space mean vectors instead of the

latent space distribution samples used during CVAE training. Then,

reconstruction residuals are defined as the difference between recon-

structions and the original data. These residuals are then corrected

across all subjects using the ComBat model with both batch and bio-

logical covariates.
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2.3.6 | Speed

While DeepComBat is able to train quickly on a single CPU core on

standard computers, including laptops, DeepComBat is still much

slower than statistical methods. The overall training time is further

increased when manual hyperparameter tuning is taken into consider-

ation, as end-users may need to train a few models before choosing a

suitable λFinal. Overall, hyperparameter tuning and final model training

should take no longer than 5–10min, depending on the number of

hyperparameters tried and dataset size.

2.3.7 | Data and code availability

Data used in the preparation of this article were obtained from the

ADNI database (adni.loni.usc.edu). The ADNI was launched in 2003 as

a public-private partnership, led by Principal Investigator Michael

W. Weiner, MD. The primary goal of ADNI has been to test whether

serial MRI, positron emission tomography (PET), other biological

markers, and clinical and neuropsychological assessment can be com-

bined to measure the progression of MCI and early AD. For up-

to-date information, see www.adni-info.org.

An R package for performing DeepComBat is available at https://

github.com/hufengling/DeepComBat. This package is written in

‘torch for R' which is the R analog of PyTorch that interfaces with the

same C++ backend for fast computation. Across 30 runs, one full run

of the DeepComBat algorithm on the ADNI dataset took an average

of 53.0 s with standard deviation of 1.7 s on an Intel Xeon CPU with

2.40 GHz clock rate. Additionally, all code for evaluation and analysis

is available at https://github.com/hufengling/deepcombat_analyses.

Code for processing ADNI data is available at https://github.com/

ntustison/CrossLong.

2.4 | Evaluation

DeepComBat was evaluated against unharmonized data as well as

other feature-level harmonization methods where code was available.

These methods included ComBat and CovBat in the main manuscript,

and ComBat, CovBat, dcVAE, and gcVAE in the Supplemental Mate-

rials (An et al., 2022; Chen et al., 2022; Fortin et al., 2017; Moyer

et al., 2020). Notably, since no code was provided in the original man-

uscript for dcVAE, we implemented this method using code provided

by An et al. (2022). For all comparison methods, we used default set-

tings and hyperparameters provided in the code. Biological covariates

of age, sex, and AD status were provided for ComBat, CovBat, and

DeepComBat. Evaluation was conducted using qualitative visualiza-

tion, statistical testing, and ML experiments.

In statistical testing and ML experiments, we assess the presence

of both batch effects and biological effects. When assessing for batch

effects, we assume that (1) test statistics corresponding to large p-

values for statistical tests and (2) worse performance in predicting

batch for ML experiments correspond to less presence of batch

effects and therefore better harmonization. However, when assessing

for biological effects, effective harmonization may lead to better,

worse, or similar results, depending on the underlying relationship

between batch and biological covariates.

2.4.1 | Qualitative visualization

We visualize the overall multivariate distribution of unharmonized and

harmonized feature matrices using Unifold Manifold Approximation

and Projection (UMAP) and principal component analysis (PCA)

(McInnes et al., 2020). UMAP was fit using the umap package in R

with 20 neighbors, 100 epochs, and default settings otherwise. Points

were displayed by batch status. PCA was fit on correlation matrices to

account for differences in scale across features. For UMAP and PCA,

arbitrary differences in sign due to model fitting were changed in

order to improve direct comparability of these visualizations between

methods. Additionally, we explore how harmonization methods act on

a small random sample of features using bivariate density plots and

plots of feature-level changes after harmonization.

2.4.2 | Statistical testing

Harmonization methods were evaluated using mass univariate and

multivariate statistical testing. For mass univariate testing, we per-

formed two-sample Anderson–Darling test on each feature, between

pairwise batches, resulting in three p-values per feature. Average p-

value across all features and pairwise batches, as well as its standard

deviation is reported.

To test for differences in feature-wise means across batch as

well as assess for validity of downstream analyses on biological

covariates, we performed linear regression on each feature, where

each regression model included the batch covariate as well as bio-

logical covariates of age, sex, and AD status. Batch p-values are cal-

culated via likelihood ratio test. For each covariate, the average

negative log 10 p-value across all features as well as the standard

deviation of these transformed p-values is reported. Negative log

10 p-values are used to better represent the distribution of p-

values very close to 0.

For multivariate statistical testing, we assess harmonization

results parametrically as well as nonparametrically. For parametric

testing, we use the multivariate analysis of variance (MANOVA) test,

which tests for differences in multivariate conditional means. Our

MANOVA model includes the batch covariate, age, sex, and AD sta-

tus. We report the negative log 10 p-value based on Pillai's trace test

statistic, which has been shown to be more robust than other MAN-

OVA test statistics (Olson, 1974).

For nonparametric multivariate testing, we use the k-nearest-

neighbor batch-effect test (kBET) metric with 500 repeats and default

settings otherwise (Büttner et al., 2019). The kBET test is a nonpara-

metric permutation-based test developed and validated in the context

of detecting batch effects in single-cell RNA-sequencing (scRNA-seq)
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that (1) randomly samples a proportion of observations, (2) identifies

each observation's k-nearest neighbors (KNNs), (3) evaluates whether

the local distribution of batch among each set of KNNs differs from

the global distribution of batch, and (4) generates an overall kBET sta-

tistic evaluating whether the number of observations with large differ-

ences in local distribution of batch are greater than that expected.

2.4.3 | ML experiments

To evaluate how our method interacts with multivariate batch or bio-

logical effects, we train ML algorithms to predict covariate informa-

tion using the harmonized feature matrix. Prediction models were

independently trained to perform classification of batch, sex, and AD

status, as well as regression of age. To perform the ML experiments,

we use the caret package, version 6.0-93, to train and assess a large

battery of ML algorithms on each feature matrix using the repeated

cross-validation strategy, with 10 repeats of 10-fold cross-validation

to estimate the out-of-sample predictive performance.

For two-class classification sex, average area under the receiver

operating characteristic curve (AUROC) across validation sets is

reported. For three-class classification of batch and AD, AUROC can-

not be calculated, so average accuracy across validation sets is

reported. For regression of age, average R2 values across validation

sets is reported. Note that in the repeated cross-validation strategy,

average cross-validation metrics can be made arbitrarily precise by

increasing the number of repeats, but variation in these metrics occurs

within each cross-validation fold due to randomness in train-validation

splitting and ML model fitting.

The ML evaluation battery for classification tasks consisted of:

support vector machine (SVM) with radial basis, quadratic discriminant

analysis (QDA), KNNs, random forest (RF), and Extreme Gradient

Boosted trees (XGBoost). The ML evaluation battery for regression of

age consisted of: SVM with radial basis, KNN, RF, and XGBoost. SVM,

QDA, KNN, and RF were fit using the default hyperparameters pro-

vided by their corresponding R packages. For XGBoost a few hyper-

parameters were a priori changed from the default to allow for

greater algorithm differences when compared to RF. These changed

hyperparameters included: eta = 0.1 and colsample_bytree = 0.5.

Number of total boosting rounds had no default and was set to 100.

Other hyperparameters were set to their defaults.

3 | RESULTS

3.1 | DeepComBat reduces batch effects in
qualitative visualizations

We visualized the effect of DeepComBat univariately and multivari-

ately for internal and external DeepComBat. For a representative, ran-

domly sampled region's cortical thickness, density plots by batch

revealed differences in distribution across batch in the raw data that

could be attributed to differences in mean, variance, and shape

(Figures 2a and 3a). This distributional difference was qualitatively

mitigated by ComBat, CovBat, and DeepComBat. Similar results were

observed in visualizations of the multivariate feature distribution using

the first two principal components and the first two UMAP dimen-

sions (Figures 2b,c and 3b,c).

Finally, we explored how various harmonization methods change

the raw data at the feature level. Here, we randomly sampled 10 corti-

cal thickness features and randomly sampled 100 subjects to obtain a

total of 1000 randomly sampled cortical thickness values. For each

harmonization method, we plotted harmonized values for these corti-

cal thicknesses against their corresponding raw values in Figures 2d

and 3d. In this visualization, ComBat and CovBat seemed to mostly

induce linear shifts in the data, consistent with their underlying shift

and scale models. DeepComBat induced small nonlinear shifts in the

data on a similar scale as ComBat and CovBat.

ComBat, CovBat, and DeepComBat performed similarly in the

two-batch setting, while dcVAE and gcVAE showed substantial trans-

formation of the raw data (Supplemental Figure 2). Additionally,

dcVAE and gcVAE mapped harmonized values to their corresponding

CVAE-predicted mean values without accounting for unmodeled

CVAE reconstruction errors (Supplemental Figure 2d). Thus, dcVAE

and gcVAE produced outputs with noise patterns characteristic of

synthetic data, as noted by Dewey et al. (2019).

Overall, qualitative visualizations showed DeepComBat effec-

tively matched univariate feature distributions across batches, pre-

served the underlying multivariate structure of the data, estimated

harmonized values that were highly correlated with the corresponding

raw values, and avoided introduction of synthetic artifacts.

3.2 | DeepComBat removes statistically detectable
batch effects and preserves inference on biological
effects

Harmonization performance was assessed using parametric and non-

parametric testing. Feature-wise linear regression results are pre-

sented in Table 2 as average negative log 10 p-values and in

Supplemental Figures 3 and 4 as quantile–quantile plots of negative

log 10 p-value distributions. On the raw data, this analysis showed sig-

nificant differences in mean across batch, when biological covariates

were included in the model. These differences were effectively

removed by ComBat, CovBat, and DeepComBat. In statistical testing

for multivariate mean effects using MANOVA, ComBat, CovBat, and

DeepComBat, completely removed batch effects from the multivari-

ate mean across features when biological covariates were also

included (Table 2).

In both univariate and multivariate analyses, ComBat, CovBat,

and DeepComBat preserved inference on biological covariates of age,

sex, and AD status. Notably, DeepComBat was slightly more powerful

than ComBat and CovBat for detecting almost all biological covariate

effects in both internal and external harmonization settings. These

increases in power for inference may reflect removal of batch-

attributable confounding.
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In nonparametric testing, average feature-wise Anderson–Darling

test results showed significant differences in univariate distributions

across batches in the raw data (Table 3). These differences were effec-

tively reduced by ComBat, CovBat, and DeepComBat. These results are

further illustrated in Supplemental Figures 3 and 4. In these figures, Com-

Bat, CovBat, and DeepComBat show p-value distributions qualitatively

similar to a uniform distribution, while raw data showed p-value distribu-

tions with more highly significant p-values than expected under a uni-

form distribution. Finally, when assessed via kBET, CovBat and

DeepComBat both produced harmonized outputs where the distribu-

tions of batch within local neighborhoods were not significantly different

from the global distribution, though DeepComBat showed a slight advan-

tage in both internal and external harmonization (Table 3). In contrast,

kBET detected highly significant differences for raw data and ComBat.

In the two-batch setting, dcVAE and gcVAE increased the statis-

tical difference in batch-wise univariate means and did not eliminate

differences in multivariate means (Supplemental Table 1). Mean-

while, dcVAE and gcVAE showed large increases in univariate power

for age and AD effects and a large decrease in power for sex effects.

These patterns may be explained by the exclusion of unmodeled

residuals in dcVAE and gcVAE harmonized outputs, since statistical

power is a function of both the effect size and the variance of resid-

uals. dcVAE and gcVAE also performed poorly in nonparametric test-

ing, according to both Anderson–Darling tests and kBET

(Supplemental Table 2). These findings are qualitatively supported in

Supplemental Figure 5.

Overall, DeepComBat removed statistically detectable batch

effects and preserved biological information without introducing

detectable bias. In univariate analyses, DeepComBat performed simi-

larly to ComBat and CovBat, while in multivariate analyses, Deep-

ComBat outperformed ComBat and CovBat. DeepComBat

outperformed dcVAE and gcVAE by all metrics.

F IGURE 2 Internal harmonization qualitative visualizations. In panels a–c, red corresponds to Siemens, green corresponds to General Electric
(GE), and blue corresponds to Philips. (a) Density plots of one randomly sampled feature. (b) Principal component analysis (PCA) plots where PCA
ellipses denote major and minor axes for each batch, centered at the batch-wise mean. (c) Unifold Manifold Approximation and Projection
(UMAP) plots. (d) Randomly sampled harmonized values plotted against their corresponding raw values. Colors indicate each of the 10 randomly
sampled cortical thickness features.
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3.3 | DeepComBat impairs detection of batch by
ML algorithms and maintains predictability of
biological covariates

A battery of ML experiments seeking to predict batch status were run

on raw and harmonized data (Figures 4a and 5a). All classifiers could

effectively determine the batch status of out-of-sample subjects in

the raw data. This ability to detect batch was greatly decreased by all

harmonization methods, with DeepComBat-harmonized data consis-

tently corresponding to the lowest mean accuracy, especially for the

ML algorithms with overall higher ability to discriminate batch.

Additionally, DeepComBat effectively retained biological informa-

tion in its outputs. In Figure 4 and 5, DeepComBat-harmonized data

showed predictive performances similar to those of raw, ComBat-

corrected, and CovBat-corrected data. In the case of age, removal of

batch effects using DeepComBat increased the detectability of age-

related information in the resulting data.

In two-batch harmonization, DeepComBat-harmonized data con-

tained less batch information that data harmonized by other methods,

and dcVAE and gcVAE removed less batch effects compared to Com-

Bat, CovBat, and DeepComBat (Supplemental Figure 6). All post-

harmonization predictive performances for biological covariates under

ComBat, CovBat, and DeepComBat were significantly higher than

those of dcVAE and gcVAE, suggesting that ignoring CVAE recon-

struction residuals may be detrimental to preservation of non-batch

information.

Overall, we found that DeepComBat more effectively removed

multivariate batch effects than other harmonization methods, even

when assessed via powerful ML algorithms such as XGBoost. Addi-

tionally, DeepComBat effectively preserved biological information in

the predictive context.

3.4 | DeepComBat is robust to hyperparameter
choice and training schedule

Empirically, DeepComBat still performed effective harmonization over

a range of λFinal and using either cyclic annealing or constant training

F IGURE 3 External harmonization qualitative visualizations. In panels a–c, red corresponds to Siemens, green corresponds to General Electric
(GE), and blue corresponds to Philips. (a) Density plots of one randomly sampled feature. (b) Principal component analysis (PCA) plots where PCA
ellipses denote major and minor axes for each batch, centered at the batch-wise mean. (c) Unifold Manifold Approximation and Projection
(UMAP) plots. (d) Randomly sampled harmonized values plotted against their corresponding raw values. Colors indicate each of the 10 randomly
sampled cortical thickness features.
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schedule. The above analyses were run on DeepComBat internal har-

monization outputs under a wide range of hyperparameter values.

These values ranged from 16 times greater than the λFinal used in our

primary analysis to values 16 times less. Loss profiles for these robust-

ness analyses are presented in Supplemental Figure 1. Harmonization

results from these analyses are presented in Supplemental Tables 3

and 4 and Supplemental Figures 7–9. Overall, results for the highest

value of λFinal, tuning using either cyclic annealing or constant schedul-

ing, showed superior harmonization according to ML experiments and

similar performance according to statistical tests.

This robustness result may be due to the design of DeepComBat,

which partitions batch effects originally present in the raw data into

one of these three components: the CVAE latent space, the CVAE

decoder, and the reconstructed residuals. Component-wise harmoni-

zation therefore allows for a form of “double-robustness” with

respect to CVAE fitting—if λFinal is too large such that most batch

effects are contained in the reconstruction residuals, ComBat on

these residuals will still allow for reasonable overall harmonization;

and if λFinal is too small such that most batch effects are contained in

the latent space, ComBat on the latent space will address the batch

effects.

4 | DISCUSSION

Multi-batch neuroimaging data are increasingly common and neces-

sary for learning generalizable models for inference and prediction.

TABLE 2 Parametric statistical
testing results, reported as negative log
10 p-values. Negative log 10 of
conventional p-value threshold 0.05 is
1.30. Larger is more significant.

Internal harmonization

Linear regression—Mean (SD)

Batch Age Sex AD Status (CN) AD Status (LMCI)

Raw 8.7 (7.82) 14.91 (6.16) 0.82 (0.75) 15.47 (7.75) 6.06 (3.13)

ComBat 0.11 (0.09) 14.71 (6.21) 0.82 (0.75) 15.86 (8.32) 6.24 (3.13)

CovBat 0.01 (0.01) 14.57 (6.22) 0.82 (0.75) 15.69 (8.36) 6.19 (3.16)

DeepComBat 0.13 (0.11) 14.82 (6.25) 0.82 (0.77) 15.94 (8.41) 6.29 (3.20)

Multivariate analysis of variance

Batch Age Sex AD Status

Raw 89.18 33.55 25.46 15.56

ComBat 0 32.41 17.64 17.10

CovBat 0 32.40 17.12 17.34

DeepComBat 0 32.82 17.77 17.52

External harmonization

Linear regression—Mean (SD)

Batch Age Sex AD Status (CN) AD Status (LMCI)

Raw 8.7 (7.82) 14.91 (6.16) 0.82 (0.75) 15.47 (7.74) 6.06 (3.13)

ComBat 0.12 (0.10) 14.58 (6.16) 0.82 (0.75) 15.96 (8.07) 6.24 (3.12)

CovBat 0.01 (0.01) 14.37 (6.15) 0.82 (0.75) 15.68 (8.06) 6.16 (3.15)

DeepComBat 0.10 (0.06) 14.74 (6.18) 0.82 (0.75) 16.16 (8.26) 6.30 (3.19)

Multivariate analysis of variance

Batch Age Sex AD Status

Raw 89.18 33.55 25.46 15.56

ComBat 0 31.86 17.46 16.87

CovBat 0 31.69 16.68 16.84

DeepComBat 0 31.74 17.18 17.12

TABLE 3 Nonparametric statistical testing results. Higher p-value
corresponds to less statistically detectable differences between
batches.

Anderson–Darling kBET

Internal harmonization

Raw 0.13 (0.24) 0

ComBat 0.45 (0.29) <0.001

CovBat 0.51 (0.26) 0.625

DeepComBat 0.45 (0.25) 0.664

External harmonization

Raw 0.13 (0.24) 0

ComBat 0.45 (0.29) <0.001

CovBat 0.50 (0.26) 0.559

DeepComBat 0.42 (0.23) 0.821
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There is also growing interest in using ML techniques to perform mul-

tivariate pattern analysis and train powerful classifiers that can effi-

ciently use multivariate data. To enable these efforts, there is

increasing need for statistically rigorous multivariate harmonization

methods.

In this study, we demonstrate that strong batch effects exist in

raw data, and that these batch effects remain detectable by ML exper-

iments even after state-of-the-art statistical harmonization methods

are applied. We also find that, while previously proposed deep learn-

ing harmonization approaches are able to partially remove batch

effects from the ADNI dataset, this batch effects correction comes at

the cost of removal of relevant biological information as well as intro-

duction of artifacts characteristic of synthetic data. We then propose

DeepComBat, a novel hybrid method that is able to take advantage of

the strengths of both deep learning and statistical methods—it uses

the CVAE architecture to perform nonlinear, multivariate correction

as well as the ComBat model to rigorously and robustly harmonize the

latent space and residuals.

4.1 | DeepComBat performance

When compared to other methods, we show DeepComBat performs

more effectively when evaluated by highly multivariate ML experi-

ments as well as nonparametric kBET testing. It performs comparably

to ComBat and CovBat when evaluated by statistical tests. Mean-

while, DeepComBat had comparable predictive performance for sex,

diagnosis, and age when compared to ComBat and CovBat, but

superior performance when compared to dcVAE and gcVAE in the

two-batch setting. While increased biological effect sizes after harmo-

nization may be desirable, the way in which biological effect sizes

change after harmonization are known to depend on the ground truth

F IGURE 4 Internal harmonization machine learning results. Validation set performance metrics are shown for 10 repeats of 10-fold cross
validation. Error bars correspond to 95% confidence intervals. Dashed red lines display expected performance of a weighted random classifier.
(a) Average accuracy for predicting batch. Lower is better. (b) Average area under the receiver operating characteristic curve (AUROC) for
predicting sex. (c) Average accuracy for predicting Alzheimer disease status. (d) Average R2 value for predicting age.
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magnitude of biological and batch effects, as well as on the nature of

confounding between batch and biology (Hu et al., 2023).

For example, in this dataset, sex is observed to be imbalanced

across the batches such that knowing a subject's batch provides infor-

mation regarding the subject's sex. In this setting, if the ground truth

sex effect is small relative to the batch effect, a classifier for sex

trained on harmonized data should theoretically perform worse than

the same classifier trained on raw data, and this pattern is empirically

observed for ComBat, CovBat, and DeepComBat in Table 2 and

Figures 4b and 5b. However, since no ground truth for post-

harmonization sex effect magnitude exists, it is unclear how much

reduction in predictive performance for sex is accurate and therefore

which method best recovers the ground truth. Similarly, an increase in

estimates of biological effects may occur if minimal imbalance is pre-

sent, but batch effect introduces bias or noise that covers up a smaller

biological signal. This may occur in settings where one batch produces

features of much higher quality than another, such as if one batch

corresponds to higher Tesla imaging compared to another. Finally, no

change in estimated biological effects may be expected if neither situ-

ation occurs or if both occur but balance each other out. However,

regardless of how estimated biological effects change after harmoni-

zation, improved removal of batch effects leads to more generalizable

and reproducible inference, since results can be trusted to be free of

complex batch-related confounding structures.

Additionally, we empirically find that, in our dataset, higher values

of λFinal lead to slightly superior DeepComBat performance under

both cyclic annealing and constant scheduling. This suggests more

extensive tuning of λFinal for each new dataset could lead to superior

results; however, increasing λFinal by too much will lead to elimination

of all subject-specific information from the CVAE latent space and

forego the benefits of DeepComBat over standard ComBat. Thus, we

choose to use a relatively small λFinal of 0.1 by default. This choice

allows for adequate latent space regularization with minimal risk of

overweighting the prior loss. Similarly, we fit DeepComBat using

F IGURE 5 External harmonization machine learning results. Validation set performance metrics are shown for 10 repeats of 10-fold cross
validation. Error bars correspond to 95% confidence intervals. Dashed red lines display expected performance of a weighted random classifier.
(a) Average accuracy for predicting batch. Lower is better. (b) Average area under the receiver operating characteristic curve (AUROC) for
predicting sex. (c) Average accuracy for predicting Alzheimer disease status. (d) Average R2 value for predicting age.
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cyclic annealing by default despite comparable performance under

constant scheduling—since cyclic annealing allows for better stability

with respect to KL vanishing when λFinal is high, cyclic annealing may

provide better fitting in certain datasets. To provide flexibility, we pro-

vide functionality for manual selection of λFinal as well as training

schedule in the DeepComBat R package.

Overall, these results suggest that DeepComBat may be espe-

cially useful for harmonization in settings where prediction or

inference using multivariate features and multivariate methods

is the goal. In these settings, feature-wise correction using statis-

tical methods may lead to significant non-corrected batch effects

that may be picked up by prediction methods and inappropri-

ately used.

4.2 | DeepComBat may be more robust to model
misspecification when compared to statistical
methods

Similarly to many statistical methods, such as ComBat and CovBat,

DeepComBat assumes batch effects can be estimated as differences

in feature-wise conditional means and variances of unmodeled resid-

uals. However, unlike statistical methods, mean batch effect are esti-

mated nonlinearly and multivariately using a combination of batch and

biological covariates along with subject-specific latent space represen-

tations. In this mean batch effect estimation procedure, mean batch

effect are partially removed by the decoder in a nonparametric man-

ner, where the only assumption on the nature of batch effect is that it

can be approximated by the decoder network. Thus, while latent

space harmonization still involves the ComBat model, overall harmoni-

zation may be less contingent on how well the data follow ComBat

assumptions. Additionally, discussed further below, moment-matching

of latent space representations has been empirically shown to be

effective in various harmonization-like tasks (Fatania et al., 2022;

Huang & Belongie, 2017; Lopez et al., 2018; Lotfollahi et al., 2019;

Zuo et al., 2021).

In terms of correcting batch effect in unmodeled residuals, Deep-

ComBat argues a meaningful portion of what statistical methods

claims are “unmodeled residuals”—information that is not explained

by biological nor batch covariates by the naive linear model—can in

fact be explained as a multivariate nonlinear function of biological

covariates, batch covariates, and subject-specific latent factors.

Through the CVAE architecture, DeepComBat is able to significantly

reduce the mean squared error between model-predicted feature vec-

tors and raw feature vectors when compared to ComBat and CovBat.

Thus, DeepComBat is able to directly model and correct more batch

effect in terms of conditional differences in mean, and less

batch effect is corrected based on the strong assumption that there

are batch-wise differences in the variances of unmodeled residuals.

Subsequently, although DeepComBat still uses the ComBat model to

correct the residuals, it may rely less on ComBat-specific assumptions

since the magnitude of batch effect correction on the residuals is

smaller.

4.3 | DeepComBat relaxes strong assumptions
made by other deep learning methods and simplifies
model fitting

Previous feature-level deep learning harmonization methods, includ-

ing dcVAE and gcVAE make a number of strong implicit assumptions.

These assumptions include (1) perfect model fit, which assumes that

reconstruction residuals insignificant and therefore do not need to

accounted for or reincorporated, (2) fully disentangleable latent space,

which assumes that the neural network can completely learn a batch-

invariant latent space based on the loss function alone, and (3) bal-

anced biological covariates across batches, which assumes that all

population-level differences across batch are in fact due to batch and

should be removed.

However, the first assumption is violated in situations where the

latent-space dimensions are too small to adequately capture non-

batch information, the decoder is not complex enough to efficiently

encode all batch-related information, and sample sizes within batches

are too limited to estimate all the necessary network parameters.

These violations are further compounded when the first two assump-

tions are considered together, while near-perfect model fit may be

achievable with a large latent space, it is even more challenging when

a completely batch-invariant latent space is required. Finally, in neuro-

imaging datasets where biological covariates are imbalanced across

batches, such as in the ADNI dataset used in this study, complete

removal of marginal batch-wise differences will necessarily involve

removal of biological information as well.

DeepComBat is able to relax these strong implicit assumptions by

(1) accounting for the presence of reconstruction residuals and rein-

troducing them on top of the CVAE-harmonized subject-level means,

(2) explicitly removing batch effects from the CVAE latent space, and

(3) conditioning on biological covariates at each harmonization step.

By relaxing these assumptions, we are able to greatly improve the

usability of DeepComBat by simplifying its architecture when com-

pared to that of dcVAE and gcVAE. For example, dcVAE and gcVAE

rely on adversarial training with a discriminator in order to train their

decoders to produce more realistic outputs, but DeepComBat no lon-

ger needs this adversarial component since non-perfect model fit is

acceptable. This minimizes computational burden and avoids common

challenges in adversarial training. DeepComBat also circumvents the

need for precise tuning of the KL divergence weighting hyperpara-

meter, since remaining batch effects in the latent space are explicitly

removed after CVAE training.

Importantly, relaxing these assumptions allows for DeepComBat

to be designed such that, if a subject-level feature vector is “self-har-
monized” back to its actual batch, that feature vector will be

unchanged. This makes sense, since “self-harmonization” should

be the identity function. However, in other deep learning harmoniza-

tion methods, including dcVAE and gcVAE, since reconstruction resid-

uals are not explicitly accounted for in these other methods, the “self-
harmonized” data will have less noise. This phenomena has been

highlighted by Dewey et al. (2019), who noticed that DeepHarmony,

an image-level harmonization method, produced harmonized images
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with noise characteristics indicative of a synthetic image—namely, that

they looked smoother. By keeping reconstruction residuals in the final

harmonized output, DeepComBat avoids an implicit assumption of

perfect model fit and allows for harmonized outputs to retain natural

noise characteristics.

4.4 | DeepComBat resembles other moment-
matching harmonization methods

DeepComBat primarily achieves multivariate harmonization by using

ComBat in the CVAE latent space in order to generate a batch-

invariant latent space. In this step, ComBat is used as a moment-

matching model that takes advantage of shrinkage estimation in order

to match conditional means and variances across batches. Analogies

between latent-space ComBat and other moment-matching style

transfer algorithms can be drawn.

Specifically, in scRNA-seq batch effects correction, scGen

encodes gene expression data to a latent space using a standard

variational autoencoder (Lotfollahi et al., 2019). Then, the algorithm

estimates and removes mean batch effects, or first moments, from

this latent space, conditional on cell type, in order to perform cor-

rection. CVAE-based methods such as dcVAE, gcVAE, and a num-

ber of scRNA-seq methods, such as scVI, can also be thought to

perform latent-space moment-matching (Lopez et al., 2018); how-

ever, these methods do so implicitly through the loss function,

rather than by explicitly estimating and correcting latent space

coordinates.

Additionally, in image style transfer, where the goal is to change

the style of an image without changing its content, adaptive instance

normalization (AdaIN) can be used along with a convolutional autoen-

coder and its variations (Huang & Belongie, 2017). In the convolu-

tional autoencoder, images are encoded into a set of latent space

convolutional filters. Then, AdaIN performs style transfer by matching

the means and variances of each filter, learned from the original

image, to the means and variances of the corresponding filters learned

from the image that has the desired style. In the non-convolutional

setting of DeepComBat, each 1�1 element of the latent space vector

corresponds to one convolutional filter, and similar moment-matching

is performed, but at the group level instead of the individual input

level.

Finally, outside of deep learning methods, DeepComBat draws on

ideas from CovBat, which has been shown to harmonize the mean

and covariance across sites. CovBat first performs standard ComBat

and then corrects the covariance structure of residuals by projecting

them into a latent space defined by principal components and running

ComBat again. Thus, CovBat performs univariate mean harmonization

and linearly multivariate residual harmonization. DeepComBat flips

these steps—it first performs nonlinear multivariate mean harmoniza-

tion and then univariately corrects the reconstruction residuals. Nota-

bly, DeepComBat autoencoder residuals are much smaller in

magnitude than CovBat linear model residuals, so univariate residual

correction is sufficient.

4.5 | Limitations

We show DeepComBat to be a promising tool for multivariate, deep

learning harmonization. However, more work must be done to con-

tinue characterizing and extending DeepComBat. First, DeepComBat

performance should be validated in other forms of high-dimensional,

large neuroimaging datasets with highly correlated features. Examples

of such datasets include voxel-wise images, diffusion imaging fea-

tures, as well as functional connectivity and other network features.

Additionally, while DeepComBat is statistically rigorous and robust to

hyperparameter choice, training schedules, and both internal and

external harmonization settings, DeepComBat still contains black box

deep learning elements which may limit utility in settings where trace-

ability is essential, such as in clinical trials. Finally, DeepComBat is

designed for harmonization of cross-sectional studies where only one

batch variable is present and cannot be applied to longitudinal data-

sets or datasets where two or more variables introduce technical

noise. In clinical or non-cross-sectional datasets, well-characterized

methods with analytical solutions, such as standard ComBat and its

variants, may be a more reasonable choice (Hu et al., 2023).

5 | CONCLUSION

DeepComBat is a novel, statistically rigorous, deep learning approach

to image harmonization that leverages deep learning and statistical

concepts to perform multivariate batch effects correction conditional

on biological covariates. We demonstrate it can more effectively

remove multivariate batch effects from structural neuroimaging fea-

ture while preserving biological information than previously proposed

methods. Additionally, DeepComBat proposes marked innovations

over previous deep learning harmonization methods, allowing for con-

ditioning on covariates, preservation of raw data characteristics, har-

monization of more than two batches, robustness to choice of

hyperparameters, and external harmonization capabilities. As high-

dimensional, multi-batch data becomes more common and interest in

using ML techniques to analyze such data grows, we hope that Deep-

ComBat will serve as a tool for end-users to remove multivariate

batch confounding. Additionally, we hope the statistically motivated

design of DeepComBat provides a new perspective for methodolo-

gists to continue developing improved deep learning harmonization

methods.
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